
LflV

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

00
S A.I. Memo No. 1102 March 1989

XP
A Common Lisp Pretty Printing System

by DTIC
Richard C. Waters ELFCT

MAY22 1989 U

Abstract

XP provides efficient and flexible support for pretty printing in Common
Lisp. Its single greatest advantage is that it allows the full benefit- ?retty
printing to be obtained when printing data structures, as well as wh_.. printing
program code.

XP is efficient, because it is based on a linear time algorithm that uses only
a small fixed amount of storage. XP is flexible, because users can control the
exact form of the output via a set of special format directives. XP can operate
on arbitrary data structures, because facilities are provided for specifying
pretty printing methods for any type of object.

xP also modifies the way abbreviation based on length, nesting depth,
and circularity is supported so that they automatically apply to user-defined

functions that perform output-e.g., print functions for structures. In addi-
tion, a new abbreviation mechanism is introduced that can be used to limit
the total number of lines printed.

Copyright ® Massachusetts Institute of Technology, 1989

This report descrihes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644. in
part by the IBM Corporation, in part by the NYNEX Corporation, in part by the Siemens
corporation, in part by the Microelectronics and Computer Technology Corporation. and in
part by the Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research coutract N000I-88-KO0t17. The views and conclusions contained in this
document are those of the author, and should not be interpreted as representing the polities.
neither expressed nor implied, of the sponsors.

Appravr! (OT pubbE 144UMNKUnh Lto '

Contents

1. Introduction.

2. Pretty Printing. 3

Additional Printer Control Variables. 3

Extensions to Output Functions. 4

3. Dynamic Control of the Arrang~ement of Output 6

Logical Blocks

Conditional Newlines. 10

Indentation. 11

Pretty Printing as Selection 1

Tabbing Within a Section. 14

User-Defined Format Directives1

Abbreviation 17

Functional Interface. N

4. Pretty Printing Types of Objects . B :

Pretty Printing Functitpiis. 21

aPretty- Printing Ty-pe Specifiers .)........ .

5. Ugly details 28

Doing Things Right 32

Bibliography....... 5

Historical Note 36

Functional Summary and Index. 37

th de(q)pfent of X1'. In I)aticiihir. I,.. Pitman, C'. Rich. Y. F-ehhtinmn. t.Se. ;mrd
I). Niot. a.n well a> J1. l-leal 'v. R. Robbill>. 1'. .\nagniostopnimlo". I). h'1ami;il. itiild B.

\lorrlorim rade m i~zetons t ajt ledl to a rliimrrmwr of verv h': ia rit I rmIrIN ernerd ' n \

UNCLASSIFIED
SCE jQIT C..&AssrCATION Or T.iS PAGE $W)'er Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPO
R T

NuklBE
R

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AI Memo 11021

4 TITLE (and S bfierf) S. TYPE Of REPORT & PERIOD COVERED

XP: A Common Lisp Pretty Printing System memorandum

S. PERFORMING ORG. REPORT NUMBER

7. AuTNOR(e) S. CONTRACT OR GRANT NUMBER(s)

Richard C. Waters N00014-88-K-0487

1. PERFORMING ORGANIZATION NAME ANO ADDRESS tO. PROGRAM ELEMENT. PROJECT, TASK

AREA A WORK UNIT NUMBERS
Artificial Intelligence Laboratory
545 Technolcg Sq,!are
Cambridge, MA 02139

7I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency March 1989
1400 Wilson Blvd. IS. NUMBER Of PAGES

Arlington, VA 22209 40
14 MONITORING AGENCY NAME I AOORESS(Il diferent from Controlling OffIce) I. SECURITY CLASS. (of thle report)

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 IS. DECL ASSI FICATION/OWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Reporf)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tHe abetract entered in Blck 20, ii different Irem Aedpo)

IS. SUPPLEMENTARY NOTES

None

1S. KEY WORDS (Continue on faveor@ Old@ If MecoeOW And Identify by block n ob.r)

LISP formatted output
pretty printing
abbreviated output

20. ABSTRACT (Conlfno a toverto aite It necoeeuy ad idenlify by block mintir)

XP provides efficient and flexible support for pretty printing in Common

Lisp. Its single greatest advantage is that it allows the full benefits of pretty

Prmntig to be obtained when printing data structures, as well as when printing

program code.

xp is efficient, because it is based on a linear time algorithm that uses only

a small fixed amount of storage. xP is flexible, because users can control the

DD I ''N, 1473 EOITION OF I NOV S S OBSOLETE UNCLASS I F I ED
S/N 0:02-014"6601 1

SECURITY CLASSIFICATION OF THIS PAGE (When Dare Enfor't

4-

exact form of the output via a set of special format directives. XP can operate
on arbitrary data structures, because facilities are provided for specifying

pretty printing methods for any type of object.
xP also modifies the way abbreviation based on length, nesting depth,

and circularity is supported so that they automatically apply to user-defined
functions that perform output-e.g.. print functions for structures. In addi-
tion, a new abbreviation mechanism is introduced that can be used to limit
the total number of lines printed.

' I . 4 ,

.1. Introduction

XP is a portable pretty printer for Common Lisp. As a pretty printer for Lisp code,
XP has the advantage that it is fast and allows the user to easily change the way code is
formatted. Beyond this, unlike most pretty printers, XP provides comprehensive facilities
for pretty printing data structures.

Four levels of use. XP can be used at four different levels. At the lowest (weakest)
level, you merely have to install xP as described below. This will give you the benefits
of more attractive and faster pretty printing. If this is all you want to do, you need not
read anything more than this introduction. However, you should take note of the issues
raised in the beginning of Section 5.

Moving to a slightly higher level, Section 2 describes several variables that can be
used to control xP and some simple additional functionalities provided by xP.

Section 3 exposes the heart of the approach taken by xP and describes a set of new
format directives that allows users to control the layout of their output dynamically in
response to the space available for printing it.

The highest level of using xP is discussed in Section 4. Facilities are provided for
specifying how particular types of objects should be pretty printed. These facilities can
be used to define (or redefine) the way program code and data structures are displayed.

Section 5 describes a number of shortcomings of xP that stem from the fact that it is
supported as a portable package of functions and macros rather than being a standard
part of Common Lisp. A number of things cannot be supported quite as they should be,
because Common Lisp does not provide all the necessary hooks. Section 5 also describes
how proper integration with Common Lisp can be achieved.

Setting up XP. To use xP, the file containing it has to be loaded. At the MIT
Al Laboratory, XP resides in the file "b:>lmlib>xp.lisp". Compiled versions exist for
Symbolics and Lucid (Sun) Common Lisp.

If a compiled version of this file does not exist at your site, one needs to be created.
Information about how to get this file via the ARPANET can be obtained by sending a
message to the author "dickai.mit.edu". No other method of distribution is available.

All of the functions and forms discussed below are defined in the package "xp". To
make these names easily accessible. you must use the package "xp". The most convenient
way to do this is to call lhe function xp::install, which also sets up some additional
feature, of xP. h examples in this manual assume that the form (xp: :install) has

been evalhiated.

e xp::install &key (:package *package*) (:macro T) (:shadow T) (:remove nil) = - T

, tn's ts tuncIon set", Ilp XP for ki te in tile package :package. ThL arguitient
package can e t her be a lpackahe. a package niaim., or a s vini ol whose namne is the ria roe
,a pak,, ib . It dt'allt ,t o t l c rurrent package.

The package -XP" is used in :package. If :macro is not nil, the readiacro ,i.-
patch iiaracter #... p. 5 1, set lp. [f :shadow is not nil. the Ylvihols xp: :write.

xp: :print. xp: :prinl. xp: :princ. xp: :pprint. xp: :format. xp: :terpri. xp: :fresh-line.
xp::write-line. xp: :-,trite-string. xp: :write-char. xp: :write-to-string. xp: :princ-

In trod u ction

to-string, xp::prini-to-string, xp::finish-output, xp::force-output, xp::clear-

output. and xp: :defstruct are shadowing imported into :package. This introduces these
functions into :package in place of the standard printing functions. If :shadow is nil you

will have to refer to these functions with explicit package prefixes whenever you wish to
print soniething using XP.

If :remove is not nil, the effects of having previously installed xP are undone. In

particular. the package is unused and any shadowing is undone. However, any changes
to the readtable are left in place.

xP son of PP _7 son of Gprint -5. 6; son of #print is the latest in a line of pretty

printers that goes back 12 years. All of these printers use essentially the same basic
algorithm and conceptual interface. Further. except for #print, which was riot u~ed
outside of the MIT Ai Laboratory. each ot these printers has had extensive use. xP has

been in experimental use as the pretty printer in CMU Common Lisp for 8 months. PP
has been the pretty printer in DEC Common Lisp for the past 3 years. Prior to three
years ago, Gprint was used for 2 years as the pretty printer in DEC Common Lisp. In
addition, Gprint has been the pretty printer in various generations of Symbolics Lisp

for upwards of 5 years. Both the algorithms and the approach have survived the test of
time. A chapter describing the xP interface will appear in the next edition of 4 and

this interface is being considered as a formal extension to Common Lisp by the Common
Lisp standardization committee.

The basic pretty printing algorithm used by #print, Gprint, PP. and xP has been
independently developed by a number of people 2, 3, in addition to the author. This
paper does not go into a detailed discussion of the algorithm since it is fully discussed

elsewhere (see 3. 5i). However, it should be noted that the algorithm is an inherently
fast linear algorithm that uses very little storage. As a result, pretty printing need not

be significantly slower than ordinary printing.

The relevance of XP is not restricted to Connon Lisp. Many of the ideas discussed in
this paper have a wider area of applicability. For instance, the mechanisms for allowing
the user to exercise control over the dynamic arrangement of output could be incorpo-

rated into almost any programming language (e.g., into the formatted output statements
of Fortran or PL 'I). Similarly, the mechanisms for linking special pretty printing func-
tions with various types of objects could be introduced into almost any programming
Ptivironment. given the same kind of type information from the compiler that a good

leb i e(,r requires.

3

* 2. Pretty Printing

Additional Printer Control Variables

xP supports all the standard printer control variables (see 14;). In addition, it supports
several new control variables that are relevant to its printing method. None of these new
variables has any effect when *print-pretty* is nil.

e *print-dispatch* default value causes standard pretty printing

This variable holds a printing dispatch table (see Section 4) that controls the way
pretty printing is performed. It is initialized to a value that causes traditional Lisp
pretty printing. Altering this table, or setting *print-dispatch* to a different table
alters the style of pretty printing.

* *print-lines* default value nil

When not nil, this variable controls the number of lines that will be printed by a single
pretty printing event. If an atteuipt is made to pretty print more than *print-lines*
lines, " --- " is printed at the end of the last line and pretty printing prematurely halts.

(pprint '(setq a 1 b 2 c 3 d 4))

With *print-lines* 3 and iine width 20 prints:
(SETQ A 1

B 2
C 3---

Experience has shown that abbreviation based on the number of lines printed can be
much more useful than the traditional depth and length abbreviation mechanisms. This
is particularly true when the user wants to limit output to a small space. To do this with
depth and length abbreviation, the length and depth have to be limited to very small
values such as 3 or 4. This often has the unfortunate effect of producing output that

consists almost totally of --#"s and "..."s grouped in parentheses. In contrast, limiting
the total number of lines printed to 3 or 2, or even 1 produces legible output. Seeing
the first few lines of output is usually more informative than seeing only the top level
skeletal structure of the output.

e *print-miser-width* default value 40

A fundamental probleit with prety printing arises when printing deeply nested struc-
tures. As line breaks have to be inserted at deeper and deeper levels of nesting, the
indentation gets greater and greater. This causes the line width available for printing to
get smaller and smaller intil it is no longer possible to print substructures in the space
available.

An approach to dealing with this problem, which has been used at least since the
original Goldstein pretty printer. I is to Introduce a special compact kind of layoit
(called -miser' style) and to use thi., style once the line width begins to get small. The

4 Pretty Printing

key idea behind miser style is that by trading off readability for compactness, it reduces
the width necessary for printing a structure and limits the increase in indentation when
further descending into the structure.

xP switches to an extra compact style of output whenever the width available for
printing a substructure is less than or equal to *print-miser-width*. If *print-miser-
width* is given the value nil, miser style is never used.

A constant default value of 40 for *print-miser-width*, irrespective of the right
margin, is used because the point at which miser style should be triggered does not
depend on the total line width, but rather on the length of the minimal unbreakable
units in the output being printed. When pretty printing programs, the size of these
units depends on the lengths of the symbols in the program. Experience suggests that
print-miser-width should be set at forn two to four times the length of the typical
symbol.

" *print-right-margin* default value nil

When not nil, this variable specifies the right margin to be used when pretty printing.
By introducing line breaks, xP attempts to prevent any line of output from going beyond
print-right-margin.

The ',eft margin for printing is set to the column position where the output begins (or
0 if this position cannot be determined). Except for unconditional newlines (see page 12)
and negative indentation (see page 13), xP will not allow anything but white space to

appear to the left of the left margin.

* *default-right-margin* default value 70

WVhen *print-right-margin* is nil. XP queries the output stream, to determine the
width available for printing. However, there are some situations (e.g., printing to a string)
where the stream has no inherent width limits. In this situation, the right margin is set
to the value of *default -right-margin*, which must be an integer.

Extensions to Output Functions

X' iters the standard printing functions (see the description of xp: : install) so that
they operate via xP when (and only when) *print-pretty* is not nil. In addition, XP

provide-s -orie additional function alit ies

" write o,; 'ct &key :dispatch :right-margin :lines :miser-width . object

I h,- !It (of ke words accepte(d by the stari(lard output function write i... exl(ndet 1v
,ti i f,,lir more kevworits ,,,rro,.,,tiolinm to the first four control variable, ;,,bo,..

A netitral format directive. xP provides a new format directl e -W. t hieh res t li
-,,:". ,i ki, r, Iti,,li 1 to) write thal -S aid -A bare lh prinl a l princ. ITI p IItr i la,.

'4 r1 t [ie (,rr,.-p,,nlirw- ;r itfitrt b)e,.vIit, every printier cont roI k;triahl,. rat her t lI n
th, value ,t *print-escape*. Ii addition. -W inieract. correc!ly wkith depth

, r,. , I-, ri't t her thlt a r.,. t i Iii ,. l ,epth cou t e, r to zero. h., ,, ti 1 be.. oeI, ll
\1, I ,,i ,hould -,e -w wwhi,', er p ,>il i ,t t 4,f' S or 'A.

Extensions to Output Functions 5

Unlike -S and -A. -w does not accept paraneter-. If given the colon modifier, -w
binds *print-pretty* to T. If given the atsign modifier, -w binds *print-level* and
print-length to nil.

Efficient support for formatted output. The control strings used by format are
essentially programs that perform printing. Given that almost all of these strings are
constants, there is no reason why they cannot be compiled into highly efficient code. In
fact, most languages other than Lisp have always compiled their format-like constructs.
However, every implementation of Common Lisp known to the author operates on format
control strings in a purely interpretive manner.

xP supports compiled format strings through the combination of two mechanisms.

The standard function format (and the directives -? and -{'} with no body) are extended
so that they can accept functional arguments in addition to standard format control
strings. (This recovers the functionality of the original MacLisp format directive Q.)
The functions passed to format must accept the pattern of arguments shown below.

formatting-function stream &rest args =:> unused-args

When format (3. -? or {-'} with no body) is called with a functional argument
instead of a control string, it applies the function to an appropriate output stream and
the appropriate list of arguments. The function should perform whatever output is
necessary. In addition, it should return a list of any of the input arguments that it does
not use when producing this output. (This is needed for the proper operation of the
directives "Q? and -{} with no body.)

A function to be passed to format can be defined in any way desired. However, xP
supports a new readmacro character ". .. " that makes it possible to obtain the efficiency
of using a function as the second argument to format without loosing the compactness of
format strings. The string following "#" in this notation is identical in every respect to
a format control string. The readmacro merely translates it into an equivalent function
that follows the conventions discussed above. (As in any string, any instances of """

in the delimited region must be preceded by "\".) Note that #"... " is not limited to
appearing only as the second argument to format. It can appear anywhere-e.g.. passed
to some other function that will eventually pass it to format or used for some totally
different purpose.

(format T #"'/Prices: 'C{'S, }" 1.50 3.23 4.50)
(format T V'(lambda (stream &rest args)

(terpri stream)
(write-string "Prices: " stream)
(loop (prini (pop args) stream)

(if (null args) (return nil))
(write-string ., stream))

args)
1.50 3.23 4.50)

'sing compiled format control strings instead of interpreted ones approximately
triples the speed of XP when running on the Symbolics Lisp Machine.

6 Dynamic Control of the Arrangement of Output

3. Dynamic Control of the Arrangement of Output

'hrough the introduction of several additional format directives, XP allows the user
to exercise precise control over what should be done when a piece of output is too large

to fit in the line width available for displaying it. The discussion below assumes that
the reader has a basic understanding of the function format and the standard format

directives, as described in 4j.

Basic concepts. Three concepts underlie the way xP supports the dynamic ar-

rangement of output-logical blocks, conditional newlines, and sections. The positions
of logical blocks and conditional newlines are specified by means of format directives. To-
gether, these directives divide the output as a whole into a hierarchy of sections within
sections.

The first line of Figure 3.1 shows a schematic piece of output. The characters in the
output are represented by -'-"s. The positions of conditional newlines are indicated by

digits. The beginnings and ends of logical blocks are indicated by "'<" and -"> respec-
tively.

The output as a whole is always treated as a logical block and forms one (outermost)
section. This section is indicated by the 0's on the second lin- of Figure 3.1. Each

conditional newline defines two additional sections (one before it and one after it) and is
associated with a third (the section immediately containing it).

The section after a conditional newline consists of: all the output up to. but not
including, (a) the next conditional newline ininiediately contained in the same logical
block: or if (a) is not applicable, (b) the next newline that is at a lesser level of nesting

in logical blocks; or if (b) is not applicable, (c) the end of the output as a whole.
The section before a conditional newline consists of: all the output back to, but not

including, (a) the previous conditional newline that is immediately contained in the same

logical block; or if (a) is not applicable, (b) tl.e beginning of the immediately containing
logical block. The last four lines in Figure 3.1 indicate the sections before and after the
four conditional newlines.

The section immediately containing a conditional newline is the shortest section that
contains the conditional newline in question. In Figure 3.1. the first conditional rewline

is immediately contained in the section marked with O's, the second and third conditional
newlines are immediately contained in the section before the fourth conditional tiewline,

and the fourth conditional newline is itIitedieiatel contained iri the section after the first
Condit ional newline.

<_,----2---- 3->--4-->->

000000000000000000000000000

22 222
333 3333

44444444444444 44444

"ii, rire 3.1: Exaniple ,t h iIal km im li ii,,o l IiM l,. l,-. til :,,,I iI,-.

ogical Blocks7

It also miakes sense to talk about the ectionl imminediatelv containing a given logical

block -I.e.. the Shortest section containing the logical block. Note that this Section
illilnediatelv contains every condlitional newline that is immnediately contained in the
block. In Figure :3.1. the outermiost logical block is immnediately contained in the section

niarkedl vwith O's. the second logical b~lock is immnediately contained in the section before
he fourth conditional ri-wlirie. and the innermiost logical block is imimediately containedl

in the section after the first conditionai newline.
Whenever possible. xP prints the entire contents of a given section on the samie line.

However, if a section is too long to fit in the line width available, xP inserts line breaks
at one or miore conditional newline positions within the section-printing the section on
niore than one line. The pretty printing algorithmn uses internal buffering of the out plt

so that it cani determiine which way to print a section. The algorithmn is fast. because the
ai loll lit of lookahead required i Strict ly Ii nited by the maximium line width available for

printIfingy.

Logical Blocks

If > I s ii15ed t o t ermin1a te a - . . >. t he directi ve deliimit s a logical bloc k. I n add ition.1
thle dlirect ive desc'u;ids into thle corresponding f ormat acgument (which should be a list
i thle sarne wayv as t he Standard (directive -1i. . . I (iterate once over list)

(format T #"+ -<Roads -<-W, :-W':> ':- Town -<-W-:>-:>~
'((elm cottonwood) (boston)))

W~ithI line wvidt h 50 prints:

+ Roads ELM, COTTONWOOD Town BOSTON +

With line width 2,5 prints:

+ Roads ELM, COTTONWOOD
Town BOSTON +

With line widlth 21 prints~:

+ Roads ELM,
COTTONWOOD

Town BOSTON +

As discuss-,ed inI the neCxt Section, the directive -:-indicates a conditional newline.
An In_,tance of -:- Is relplaceri by a line break when the following section cannot fit onl

thit endl of ilie, cii rrent lie. \\hienever line breaks are introduced, Indent at ion IS also

n it Fodl 11 -'), IThat each line iii a log icai block beginis in the samec colum n ast tte log ical

block ;s it whole.,I

If 'he a ti)i modficr I, us-ed withi(-< . the dlirective operates on the reTIMiairliuit

format arguirient I i) Ote a ij ie va i >t 0aridard directive -11. (...}itecrate once veor

remiaiilg a~l~1Lr VV XCept that all ()t thle renliaining argumients are alwaivs ('otiuruled

hr the -<. : >. hethe-r or rijt tier ,, actuallY used by\ the f~rniat strintg nestedl M Ii

directive. Ile dliretixte - teriiiiiatiljr Ie-At (all he uised to exit Iroiti -<... ;1,i~ti

t ll be Ied Ox, . fl rum -

s Dynamic Control of the Arrangement of Output

(format T "+ "<Roads -<-W'-, :_-W-:> -:- Town <'W':>':> +1
'(elm) '(boston))

With line width 21 prints:
+ Roads ELM

Town BOSTOb +

The portion of a format control string enclosed in a <... :> directive can be divided
into wgnments -<prefix; bodv' ;suffix:> by ; directives. It is an error for the enclosed
portion to be divided ito more than three segments. If the portion is only divided into
twc segments. the suffix defaults to the null string. If the portion consists of only a singe
segment, both the prefix and the suffix default to the null string. The prefix and suf4iQx
nioist both be constatit strings. They cannot contain format directives. The body can be
any arbitrary format control string.

When a "<preix-;body;suffix:> directive is processed, the prefix is printed out
just before the logical block begins and the suffix is printed out just after tte logical
block ends. This behavior is the same as if the characters in the prefix and suffix simply
appeared before and after the -<...-:> directive, except for the way error situations
are handled and the way "<...:> interacts with depth and circula.ity abbreviation (see
page 17 ;.

(format T #"+ -<Roads '<[;-W ':--W-;]-:> -:- Town <E;W;]:>:> +"
'((elm cottonwood) boston))

With line width 21 prints:
+ Roads [ELM

COTTONWOOD]
Town BOSTON +

An interesting additional feature of -<...-:> is illustrated by the example above.
When a "... :>directive is applied to an argument that is not a list, the directive
is ignored and the offending argument is printed using -W. Among other things, this
mcans that while the argument is printed, the prefix and suffix are aot. The soft fail-
ure of "<... :> when presented with ion-lists makes it possible to write robust format
strings that produce reasonable output for a wide range of possible arguments. This is
particularly useful in debugging situations.

l)uring the processing of the format .tring nested in "<... ':>, arguments are taken
oe hv one from the ist passed to <... :>. If an attempt is made to access an argument
,It ; t ii ie when the reiaiii n g prtion of this argument list is not a cons, then

ir,-,'rted in le output. "W is ,v.-e'd to print out the remaining argument list, and the
pri,, inri of the l,,ical bl,,k is t,'rmii ted. except for printing the sulix (if any). fhis

,, -asir to write format .tnngs that art, robust in the face of malforned argument
!i~t. i \,te that -- exits only when the reuiainiig argunient list is nil.)

(format T #"+ -<Roads <[-;'W" ":--W-;'-:> -:- Town <[;W;] ::> +"
'((elm . cottonwood) boston))

\ r i, line %6 i, h '21 priltt :

Roads [ELM
COTTONWOOD]

Town BOSTON +

Logical Blocks 9

If the colon modifier is used with "<.. :>, the prefix and suffix default to "'(" and
.1)" (respectively) instead of to the null string. Note that the prefix and suffix are printed
out even when the argument corresponding to "<. .. :> is an empty list.

(format T #"+ -<Roads ":<'W ':-'W':> -:- Town -:< -- W-:>-:> +"

'((elm cottonwood) 0))

With line width 21 prints:
+ Roads (ELM

COTTONWOOD)
Town () +

It the directive -0; is used to terminate the prefix in a -<... -:> directive, the prefix is
treated as a pe-r-line prefix. A per-line prefix is printed at the beginning of every line in
the logical block, rather than just before the start of the block as a whole. This is done
in such a way that the prefixes on subsequent lines are directly below the occurrence of
the prefix on the first line.

(format T #"'<; ;; -Q;Roads '<= @;'W, ':-'W':> ':- Town -<'W':>':>"

'((elm cottonwood) (boston)))

With line width 50 prints:

;;; Roads = ELM, COTTONWOOD Town BOSTON

With line vidth 25 prints:

;;; Roads = ELM,
= COTTONWOOD

;;; Town BOSTON

If a -<...-:> directive is terminated with ":Q>, then a -:- is automatically inserted

after each group of blanks immediately contained in the body (except for blanks after a
"<newline> directive). This makes it easy to achieve the equivalent of paragraph filling.

(format T #"-<':(-W-) street goes to :(W').:Q> ' '(main boston)) -
(format T #"-<-:(-W-) -:-street -:-goes -:-to :_:(H).:>"

'(main boston))

With line width 12 prints:

Main street
goes to
Boston.

To a consil able extent, the basic form of the directive <... > is incompatible with
the (vianic ,',ntrol of the arrangement of output by W " "... ->, -I. and - :T. As a

r,.,ult, it is ani error fr any of these directives to be nested within -<...->. (Note that
In -,tandard format, it makes little sense to have anything that can cause a line hreak

within a -<. ;,11(1 I d1o- not defire what would happen it' this were the case.-
,'vord Ihi-. tI is o al,(an errwr fir the -<... ;. . . > forn 4f "<... "> I') he u , l

all in ,onjuiti.,II with any o t the, directives. this is a functionality that is reTilere
hyoet 1fr 11tie prefixe, e In "<... :

10 Dynamic Control of the Arrangement of Output

CoIiditional Newlines

The format directive " is used to specify conditional newlines. By means of the colon
and atsign modifiers, the directive can be used to specify four different criteria for the
dynarnic insertion of line breaks: linear-style, fill-style, miser-style, and mandatory-style.

By default. whenever a line break is inserted by a conditional newline, indentation is
also introduced so that the following line begins in the same column as the first character
in the immediately containing logical block. This default can be changed by using the
directive -I (p. 13).

Linear-style conditional newlines. Without any modifiers, -_ specifies linear-
style insertion of line breaks. This style calls for the subsections of a logical block to be
printed either all on one line or each on a separate line.

Linear-style conditional newlines are replaced by line breaks if and only if the im-
mediately containing section cannot be printed on one line. As soon as the line width
available becomes less than the length of a given section, every linear-style conditional
newline in it is replaced by a line break.

(format T #"':<LIST '4<QW ° _.W ' _ -W':>,:>" '(first second third))

With line width > 25 prints:
(LIST FIRST SECOND THIRD)

With line width < 25 prints:

(LIST FIRST
SECOND
THIRD)

Miser-style conditional newlines. If the atsign modifier is used with -- , the
directive specifies miser-style insertion of line breaks. Miser-style conditional newlines
are replaced by line breaks if and only if miser style is in effect in the immediately
enclosing logical block and the immediately containing section cannot be printed on one
line. Miser style is in effect for a given logical block if and only if the the starting column
of the logical block is less than or equal to *print -miser-width* columns from the end of
the lire. (Note that the "(" in the example below is not in the logical block, but rather

before it.)

(format T #":<LIST "Q_7<W "-'W '_-W-:>':" '(first second third))

Wi h line width Io and *print -miser-width* 9 prints:
(LIST FIRST

SECOND
THIRD)

\ line width i10 and *print -miser-width* 9 9 prints:

(LIST
FIRST
SECOND
THIRD)

I..,',i Iin miser tvle. titt, pretty printiri atlgrorithin i; iiot uarariteed t', .m1cc ed in
., lI u',,tpnt within th, liet width nvailalde. In pairticuilar. line. breaks arv n'ver

Conditional Newlines LI

Inserted except at conditional newline positions. As a result. a given output requires a

certain mniiiuni amount of line width to print it. If the amount of line width available
im- less than this amount. characters are printed beyond the end of the line.

((;PR[NT .5 supported an additional mechanism for dealing with deeply nested struc-
tures. When indentation reduced the line width to a small percentage of its initial value.

major program structures (such as prog and let) were radically shifted to the left by re-
ducing the indentation to nearly zero. This violated standard Lisp pretty printing style.
but significantly increased the line width available for printing. Unfortunately. experi-
ence showed that. though this was very useful in sume situations, it was, in generaL. more
confusing than helpful.)

Fill-style conditional newlines. If the colon modifier is used with "_, the directive

specifies fill-style insertion of line breaks. This style calls for the subsections of a section
to be printed with as many as possible on each line.

Fill-style conditional newlines are replaced by line breaks if and only if either (a)

the following section cannot be printed on the end of the current line, (b) the preceding
section was not printed on a single line, or (c) the immediately containing section cannot

be printed on one line and miser style is in effect in the immediately containing logical
block. If a logical block is broken up into a number of subsections by fill-style conditional

newlines. the basic effect is that the logical block is printed with as many subsections as
possible on each line. However, if miser style is in effect, fill-style conditional newlines
act like linear-style conditional newlines.

For instance, consider the example below. The format control string shown uses the

standard directives "{... } (iterate over arguments) and -- (terminate iteration) to

decompose the list argument into pairs. Each pair in the list is itself decomposed into
two parts using a "<...-:> directive. A space and a -:- are placed after each pair except

the last.

(format T #"(LET :<O{":<W W O:_'}:>_ ...)"

'((x 4) (*print-length* nil) (z 2) (list nil)))

With line width 35 prints:

(LET ((1 4) (*PRINT-PRETTY* NIL)
(Z 2) (LIST NIL))

With line widlth 22 prints:

(LET ((X 4)
(*PRINT-LEJGTH*
NIL)
(Z 2)
(LIST NIL))

Note that when tih ,ine width is 35. only one line break (bfre "(Z 2)) has to ho

irr,,ltmcel. n'ce thi' i- ,ln'. (Z 2) " anid "(LIST NIL))" (an both tlit on the neMxt limo'.

Also n ote that whorm th, lin width is 25. there is a line break after "'NIL) "'. ve n twhomlh

"(Z 2) " 'v, ll lit on the- end ," tihe previous line. The line I)re.mk i:, introduced. tie t,,

criteria (bK in the deiition tbove. Ihi: criteria is used, because lniany people jud," that
wiltpt of w l forin i forni violat,,, the)asic aesthetics)f lisp pretty print ing.

12 Dynamic Control of the Arrangement of Output

(LET ((X 4)
(*PRINT-LEIGTH*
NIL) (Z 2)
(LIST NIL))

It is often useful to mix different kinds of conditional newlines together in a single
logical block. In general, this works well without any conflicts arising between the ways
the various conditional newlines work. However, it is not a good idea to have a miser-
style conditional newline immediately after a fill-style conditional newline. The problem
is that the miser-style conditional newline will terminate the section following the fill-style
conditional newline. As a result, no account will be taken of what follows the miser-style
conditional newline when deciding whether or not to insert a line break at the fill-style
conditional newline. This can cause the output after the miser-style conditional newline
to extend beyond the end of the line.

Mandatory-style conditional newlines. If the colon and atsign modifiers are
both used with -. the directive specifies mandatory insertion of a line break. Among
other things, this implies that none of the containing sections can be printed on a single
line. This will trigger the insertion of line breaks at linear-style conditional newlines
in these sections. With regard to indentation, mandatory-style conditional newlines are
treated just like any other kind of conditional newline. This makes them different from
un conditional newlines.

Uncondit-onal newlines. There are at least six ways to introduce a newline into
the output v'ihout using -.. You can use the directives -I. and -k. You can include a
newline character in a format string. You can call terpri or print. You can print a string
that contains a newline. Each of these methods produces an unconditional newline that
must always appear in the output. Like a mandatory conditional newline, this prevents
any of the containing sections from being printed on one line.

It is not completely obvious how unconditional newlines should be handled. There
are two very suggestive cases, which unfortunately contradict each other. First, suppose
a program containing a string constant containing a newline character is printed out and
then read back in. To ensure that the result of the read will be equal to the original
program. it is important that indentation not be inserted after the newline character in
the string. On the other hand, suppose that the same program is being printed into
a file by a format string specifying a per-line prefix of ";;;", with the intention that
the program appear in the output as a comment. To ensure that this comment will not
interfere with subsequent reading front the file, it is important that the prefix be printed
when the newline in the string is printed.

In an attempt to satisfy the spirit of both of the cases above. XP applies the followirigy
heuri.,tic. Indentation is used only if a newline is created with _.

(format T #"-:<LIST "0<'W "_"W':>-:>" '(first "string on

two lines"))

\With line width 100 prints:
(LIST FIRST

"string on
two lines")

Indentation 13

However, any per-line prefixes (and any indentation preceding them) are always printed
no matter how a newline originates.

(format T #"-C<;;; "Q;':<LIST 0<-W : >" '(first "string on

two lines"))

With line width 100 prints:
;;; (LIST FIRST

"string on
;;; two lines")

Discarding trailing spaces. Conditional newline directives are typically preceded
by some amount of blank space. This is done so that the subsections of a section will
be visualy separated when they are printed on a single line. However, without anything
more being said, this would lead to the printing of unnecessary blank spaces at the end
of most lines when line breaks are inserted. In the interest of efficiency. xP suppresses
the printing of blanks at the end of a line if (and only if) the line break was caused by
a -_ directive. For instance, there are no blanks at the end of any of the lines in the
examples above, except that, if there are blanks after the word "on" in the string in the
two unconditional newline examples, these blanks appear in the output.

Indentation

By default, the second and subsequent output lines corresponding to a logical block
are indented so that they line up vertically under the first character in the block. The
format directive -I makes it possible to specify a different indentation.

The directive "ni specifies that the indentation within the immediately containing
logical block should be set to the column position of the first character in the block
plus n. If omitted. n defaults to zero. The parameter can be negative, which will have
the effect of moving the indentation point to the left of the first character in the block.
However, the total indentation cannot be moved left of the beginning of the line or left
of the end of the rightmost per-line prefix.

The directive -n: I is exactly the same as "n1 except that it operates relative to the
position in the output of the directive itself, rather than relative to the position of the
first character in the block.

As an example of using -I, consider the following: If the line width available is 25.
the -_ directive is replaced by a line break. The "1I directive specifies that the statement
in the body of the defun should be printed at a relative indentation of I in the logical
block. If the line width is 15. the -: - is also replaced by a line break. The : I directive
before the -W printinz the function name causes the argument list to be lined up under the
function name. The column position corresponding to the -:I is determined dynamically
as the output is printed.

(format T #"':<'W "@_':I-W -:--W 1II_-W':>"

'(defun prod (x y) (* x y)))

With line width 50 prints:

(DEFUN PROD (X Y) (* I Y))

14 Dynamic Control of the Arrangement of Output

With line width 25 prints:
(DEFUN PROD (X Y)
(* x Y))

With line width 15 prints:
(DEFUI PROD

(X Y)
(, I Y))

Changes in indentation caused by a -1 directive do not take effect until after the
next line break. As a result, it is important that the -I directives in the example above
precede the -_ directives they are supposed to affect. It should also be noted that, a 'I

directive only affects the indentation in the immediately containing logical block.
In miser style, all -1 directives are ignored, thereby forcing the lines corresponding to

the logical block to line up under the first character in the block.

With line width 15 and *print-miser-width* 20 prints:
(DEFUN
PROD
(x Y)
(. Y))

Pretty Printing as Selection

Stepping back a moment, it is useful to reflect on how the format directives above
interact to support pretty printing. The >... : and -_ directives in a format control
string divide the output up into a hierarchy of sections within sections. The -_ and
-I directives simultaneously specify three ways (on one line, on multiple lines, and in
miser style) for printing each section. The job of the pretty printer boils down to se-
lecting (based on the length of the section, the line width available, and the value of
print-miser-width) which of the three ways is appropriate for printing each section.

The format directives have been designed so that it is relatively easy to specify three
different ways to print a logical block in a single format control string. In particular,
except for line breaks, white space, (and per-line prefixes), the characters to be printed

are exactly the same in each of the three styles. The -_ and -1 directives specify how
the logical block sections are to be arranged when printed on multiple lines and in rinser
,tyle.

Many other kinds of pretty printing directives could have been supported-for exam-

pie. arbitrary sections of text that are output only when a section is printed on multiple
ines. XP supports only the linited set of directives above, because experience has shown
them to be a good compromise between the requirements of expressive power, easy un-
(er,idat)ility. and efthciencY.

Tabbing Within a Section

The .tandard format directive "T is extended ,o t hat it supports the colon modifier iII
1dditi,)l to the atsign niodifier. If the colon niodifier is specified, the tabhia ri conipuitation

User-Defined Format Directives 15

is done relative to the beginning of the immediately containing section, rather than
with respect to the beginning of the line. (When this computation is performed, any
unconditional newlines in the section are ignored.) As an example of using -:T, consider
the following. Each street name is followed by a -8:T, which ensures that the total width
taken up will be a multiple of 8. Fill-style conditional newlines are used to put as many
streets as possible on each line.

(format T #"':<Roads :IQ_@{W"8:T': 7}':>"

'(elm main maple center))

With line width 25 prints:
Roads ELM MAIN

MAPLE CENTER

The fact that -:T operates solely within the immediately containing section means
that the number of spaces to insert is independent of whatever indentation is in effect.
In the example above, a column spacing of 8 is used, but the entire table is shifted over

6 columns. (Note the way the -a- delimits the beginning of the section containing the
first road.)

(The fact that -:T operates solely within the immediately containing section and ig-
nores unconditional newlines means that the amount of space to insert can be determined
before deciding which (if any) conditional newlines have to be replaced with line breaks.
This is essential for the efficient operation of the pretty printing algorithm.)

When the normal directive T (without a colon) is processed, tabbing is computed
relative to the beginning of the line and all conditional newlines are ignored. (Again, this
is important so that the number of spaces to insert can be determined before making any
decisions about conditional newlines.)

As a practical matter, one should not use -T after a conditional newline nor -:T after
an unconditional newline.

User-Defined Format Directives

XP provides a mechanism for allowing the user to define new format directives. In
a somewhat simplified form, this revives a feature of format that was left out when
Common Lisp was initially developed.

xP allows a format string to contain a directive of the form -/name/. When this is
the case, it is assumed that a function named name has been defined. This function must
accept the pattern of arguments shown below. (Name cannot contain any instances of
"'/". In addition. the "'/"s must be used even if the name only has one character. Among
other things, this means that thi. nuehanism cannot be used to redefine the standard
format directives.)

name stream arg colon? atsign? krest parameters --- ignorcd

The colon modifier, the atsign modifier, and arbitrarily many parameters can be
;pecified with the /narne/ lirective. This information, along with the output stream

and one argument from the current argument list, are passed to the function name. The
input colon? is T if and only if the colon modifier was specified. The input atsigna Is T if

16 Dynamic Control of the Arrangement of Output

and only if the atsign modifier was specified. The function name should perform whatever
operations are required to print arg into stream. Any value returned by the function is
ignored.

Packages. A key problem with "/name/ directives derives from the fact that, as
written by the user, name is a string, not a symbol. This string has to be converted into
a synibol to identify the function. The question is, what package should this symbol be
in? You can write a directive of the form -/package:name/, in which case the package
is explicitly specified and there is no problem. However, if no package name is specified,
a default package has to be chosen.

[n Common Lisp, symbols without explicit package prefixes are placed in the package
that is contained in the variable *package* at the moment when the symbol is first read.
To continue this policy, name should be placed in the package that is contained in the
variable *package* at the moment when the format string is first read. If a -/name/
directive appears in a format string specified using #11... ", then this correct behavior is

obtained.
Unfortunately, if -/name/ appears in a format string specified using simply "...

then name is placed in the package that is contained in the variable *package* at the
moment when the format string is first evaluated. It is very possible that this package
will not be the same as the one in effect when the string was read. As a result, it is
advisable to use #"... " whenever u-ing -/name/ directives.

Special format directives for lists. XP provides three special format directive,,
for printing lists. These are defined and accessed using the mechanisms for user-defined
format directives described above.

The directive "/linear-style/ prints out the elements of a list either all on one line
or each on a separate line. parentheses are printed around the list if the colon modifier
is specified.

(defun linear-style (stream list &optional (colon? T) atsign?)
(declare (ignore atsign?))

(if colon?
(format stream #':<Q{*W . .}:>" list)
(format stream #"<Q{W . .}:> list)))

(format T #"":/linear-style/" '(one two three))

Vith line width 15 prints:

(ONE TWO THREE)

' Vith line width 14 prints:

(ONE
TWO
THREE)

[Kl directive "/fill-style/ prints out the elenents of a list with is mnany elcients

as p)oil)leon each line. Except for the fact that it uses : instead of it is identical
to "/linear-style/.

A bbreviation 17

(format T #"'-/fill-style/" '(one two three four five))

With line width 25 prints:
ONE TWO THREE FOUR FIVE

With line width 15 prints:
ONE TWO THREE
FOUR FIVE

The directive -/tabular-style/ is similar to "/fill-style/, except that it prints the
elements of the list so that they line up in a table. In addition to the colon modifier,
'/tabular-style/ takes a parameter (default 16) that specifies the width of columns in
the table.

(format T #"'8:/tabular-style/" '(one two three four five))

With line width 20 prints:

(ONE TWO
THREE FOUR
FIVE)

Abbreviation

XP fully supports abbreviation controlled by *print-level*, *print-length*, and
print-circle. In addition, (see Section 2) XP supports a new abbreviation mechanism
that limits the total number of lines printed. All four mechanisms are supported in such
a way that they automatically apply to user-defined functions that perform output.

Depth abbreviation. xp obeys *print-level* in its internal operation. In addition,
it makes it very easy to write format control strings that obey *print-level*. This
is done by basing depth abbreviation on the concept of logical blocks. Whenever a
'<...':> directive is encountered at a dynamic nesting depth in logical blocks greater
than *print-level*, "#" is printed instead of the block. In addition, the argument (or for
-4<... -:> arguments) that would have been consumed by the directive are skipped.

The following example illustrates how -<... :> supports depth abbreviation. The
most important feature of the example is that it shows that depth abbreviation is con-
trolled by the dynamic nesting of -<. .. :> directives, not their static nesting. In the
second output shown, the statically outermost instance if -<... -:> in '/linear-style/

(p. 22) is at a dynamic nesting depth of 3. (Note that since there is an implicit log-
ical block dynamically wrapped around the entire output, the dynamically outermost
instance of -<... ":> is at a dynamic nesting depth of I.)

(format T #"+ -:<'W -:<-W -:/linear-style/-:>':> +" '(1 (2 (3))))

With *print-level* nil prints:
+ (1 (2 (3))) +

With *print-level* 2 prints:
+ (1 (2 #)) +

18 Dynamic Control of the Arrangement of Output

Length abbreviation. xP obeys *print-length* in its internal operation. In ad-
dition, it makes it very easy to write format control strings that obey *print-length*.
This is done by basing length abbreviation on the concept of logical blocks.

.<... .:> provides automatic support for length abbreviation. If *print-length* is
not nil, a count is kept of the number of arguments used within the <... -:>. If this
count ever reaches *print-length*, ". . ." is inserted in the output and the processing
of the logical block is terminated, except for printing the suffix (if any). As with depth
abbreviation, the processing depends on dynamic relationships, not static ones.

(format T #"+ 1:<'{W }:> +" '(1 2 3 4 5))

With *print-length* nil prints:
+ (1 2 3 4 5) +

With *print-length* 2 prints:
+ (1 2 ...) +

Circularity abbreviation. XP obeys *print-circle* in its internal operation. In
addition, it makes it very easy to write format control strings that obey *print-circle*.
This is done by supporting circularity abbreviation through the combined actions of -w
and <...

In situations where *print-circle* is not nil, the following extra processing is per-
formed. When -w is applied to a non-list, a check is made to see whether the argument
has previously been encountered. If so, an appropriate #n# marker is printed out instead
of printing the argument. Similarly, when a -<... :> is applied to a list, a check is made
to see whether the list has previously been encountered.

In addition, if an attempt is made to access an argument from the list passed to
:>. at a time when the remaining portion of this list has already been encountered

during the printing process, ". #n#" is inserted in the output and the processing of the
logical block is terminated, except for printing the suffix (if any). This catches instances
of cdr circularity in lists.

(format T #"+ -:<-Q{'W-- -}:> +" '#1=(1 2 #1# 3 . #1#))

With *print-circle* T prints:
+ #1=(I 2 #1# 3 . #1#) +

With *print-circle* T and *print-length* 2 prints:
+ (1 2 ...) +

(ircularitv detection is an inherently slow process. In particular, two entire pases
have ,, tke 1 ade over the 0 it p it: one to deterinne what #n= markers should)e printed
arid ari, H r to perforin the actual printing. All arid all. setting *print-circle* 1i T

rLir ~ti~i dubles the time reqilred for printing ising XP and should be avoide,, il>-
.tritle ,ece- arv. In th inte'rest of eficiency. XP doe, not print circularity ahhreviat on

ititrkers in situations where other abbreviation methods hide the circularitYv. I his i
illhi~trted, in the last part)f the exanple above.

',,r a format string to c'orrectlv support circularity aI)hreviation. every part (,f liet
o,,i t,.ing printed irust be s een bv an occurrence of -W or <...-:>. (If sotie part i-

Functional Interface 19

skipped (e.g., printed with -s), xP will fail to detect circularities involving that part.)
(The above criteria are also required for depth and length abbreviation to be handled in
a completely correct way.)

Reprinting an abbreviated object. xP keeps track of the last pretty printing event
that lead to abbreviation due to *print-level*, *print-legth*, or *print-lines*. A
hook, is provided for obtaining this information. Using this hook, mechanisms can easily
be implemented for reprinting abbreviated objects in full (see page 32).

" *last-abbreviated-printing*

This variable records the last printing event where abbreviation occurred. Funcalling
its value (e.g.. after turning off abbreviation) causes the printing to happen a second
t i me.

Functional Interface

The primary interface to XP's operations for dynamically determining the arrange-
ment of output is provided through format. This is done, because format strings are
typically the most convenient way of interacting with XP. However, XP's operations have
nothing inherently to do with format per se. In particular, they can also be accessed via

the six functions and macros below.

* within-logical-block (stream-symbol list &key :prefix :per-line-pref ix :suff ix)
&body body =;, nil

In the manner of -<... :>, this macro causes printing to be grouped into a logical
block. The value nil is always returned.

The argument stream-symbol must be a symbol. If it is nil, it is treated the

same as if it were *standard-output*. If it is T, it is treated the same as if it were
terminal-io. The run-time value of stream-symbol must be a stream (or nil meaning
standard-output or t meaning *terminal-io*). The logical block is printed into this

destination stream.
Within the body. streani-symbol is bound to a special kind of stream that supports

dynamic decisions about the arrangement of output and then forwards the output to the
destination stream. All and only the output sent to stream-symbol is treated as being in
the logical block. (It is an error to send any output directly to the underlying destination
st ream.)

The :suffix. :prefix, and :per-line-prefix must all be expressions that (at run

time) evaluate to strings. The argument :suffix (which defaults to the null string)
specifies a sutfix that is printed just after the logical block. The argument :prefix
specifies a prefix to be printed before the beginning of the logical block. If the argu-
nient :per-line-prefix is supplied, it specifies a prefix that is printed before the block

and at the begin ii ing of each new line in the block. It is an error for :prefix a nd
:pre-line-prefix to both be supplied. If neither is supplied, a :prefix of the null -trin
i> assuined.

The argument list is1 interpreted as being a list that the body Is responsible fr print-

in g. If lijt is not a list, it is printed ising write on streani-s Yn bol and the b,,,1Y U

20 Dynamic Control of the Arrangement of Output

skipped along with the printing of the prefix and suffix. If *print-circle* is not nil
and list is a cons that has already been printed by or within a dynamically containing
logical block, then an appropriate tn# marker is printed on stream-symbol and the body
is skipped along with the printing of the prefix and suffix. (If the body is not responsible
for printing a list, then the behavior above can be turned off by supplying nil for the
list argument.)

If *print-level* is not nil and the logical block is at a dynamic nesting depth of
greater than *print-level* in logical blocks, "*" is printed on stream-symbol and the
body is skipped along with the printing of the prefix and suffix.

The body can contain any arbitrary Lisp forms. All the standard printing functions
(e.g., write, princ, terpri) can be used to print output into stream-symbol. Within a
logical block, these functions interact correctly with *print-circle* and *print-depth*.

From the above, it can be seen that within-logical-block supports all of the func-
tionality of ... :> except for the automatic introduction of fill-style conditional new-
lines supported by -<..." : >. This feature is omitted, because it is a transformation on
format strings rather than a printing operation.

" conditional-newline kind &optional (stream *standard-output*) =:> nil

The function conditional-newline supports the functionality of --. The stream
argument (which defaults to *standard-output*) follows the standard conventions for
stream arguments to printing functions (i.e., nil can be used to mean *standard-output*

and T can be used to mean *terminal-io*). If stream is a special stream bound by
w ithin-logical-block, a conditional newline is sent to stream. Otherwise, conditional-
newline has no effect. The value nil is always returned.

The kind argument specifies the style of conditional newline. It must be one of : linear
), :fill (':), :miser (-0-), or :mandatory (-: _).

" logical-block-indent relative-to n &optional (stream *standard-output*) => nil

The function logical-block-indent supports the functionality of -I. The stream
argument (which defaults to *standard-output*) follows the standard conventions for
stream arguments to printing functions. If stream is a special stream bound by within-
logical-block, logical-block-indent specifies the indentation within the innermost en-
c[osing logical block. Otherwise, logical-block-indent has no effect. The value nil is
always returned.

T[he argument n specifies the amount of indentation. If relative-to is :block, this
inlertation is relative to the start of the enclosing block (as for -I). Alternativelv. if
relative-to is :current. the indentation is relative to the current output position in the
ill ilt,'d ia telv containirig ',ectiorn (as fo r I). It is an error for relative to to take on1 any

tl her valiie.

" logical-block-tab kind cwlrn o4,li11c &optional (strean *standard-output*) :- nil

lie fi icti,,n logical-block-tab s ipport the functionalit v of -T. Ilh, trealt argun

,irit J which defamit' to *standard-output*) follows the standard c<',tvet ins for .-t r'ati

trg umel,-its to printing f tiiii ti ,. If tr'itii 1i i t pecial .t reani bound by within-logical-

Functional Interface 21

block, tabbing is performed. Otherwise. logical-block-tab has no effect. The value nil

is always returned.

The arguments colnurn and colinc correspond to the two numeric parameters to -T.
The kind argument specifies the style of tabbing. It must be one of :line (-T), :block
(- :T), :line-relative ('OT). or :block-relative (- :QT).

* logical-block-pop args optional (stream *standard-output*) ==> item

The macro logical-block-pop is identical to pop except that, when used in conjunc-
tion with within-logical-block, it supports *print-length* and *print-circle*. It is
an error to use logical-block-pop anywhere other than syntactically nested within a call
on within-logical-block.

The argument args must be a symbo! or expression acceptable to pop. The stream
argument (which defaults to *standard-output*) follows the standard conventions for
stream arguments to printing functions. If stream is a special stream bound by within-
logical-block, then logical-block-pop performs the special operations described below.
Otherwise, logical-block-pop is identical to pop.

Each time logical-block-pop is called, it performs three tests. First, it checks to
.ee whether args is a cons. If not, ." is printed on stream, args is printed on stream
using write, and the execution of the immediately containing within-logical-block is
terminated except for the printing of the suffix. Second, if *print-length* is nil and
logical-block-pop has already been called *print-length* times within the immediately
containing logical block. is printed on stream and the execution of the immedi-
atel, containing within-logical-block is terminated except for the printing of the suffix.
Third, if *print-circle* is not nil. args is checked to see if it is a circular reference. If it
is. -'. - followed by an appropriate #n# marker is printed on stream and the execution of
the immediately containing within-logical-block is terminated except for the printing
of the suffix. If all three of the tests above fail, logical-block-pop pops the top value
off of args and returns this value.

logical-block-count &optional (stream *standard-output*) := nil

This macro is identical to logical-block--pop except that it does not take an args
argument. always returns nil. and only performs the second test discussed above. It is
uiseful when the components of a non-list are being printed.

As an example of using the functions above, consider that tabular-style is defined
as follows. 1'sing logical-block-tab in the definition makes it easy to conmmunicate the
parameter tabsize to the algorithm controlling the dynamic arrangement of output. By
rlivanis (4 tie. li. t ar _.uirue',itf within-logical-block and the macro logical-block-pop.
the detinition is. romiut in the face (,f malformed lists and supports *print-length*.

print-level. and *print-circle-.

Dynamic Control of the Arrangement of Output

(defun tabular-style (s list &optional (colon? T) atsign? (tabsize nil))
(declare (ignore atsign?))

(if (null tabsize) (setq tabsize 16))
(qithin-logical-block (s list :prefix (if colon? "C' fill)

:suffix (if colon? ") ..))

(when list
(loop (write (logical-block-pop list s) :stream s)

(if (null list) (return nil))
(write-char #\space s)
(logical-block-tab :block-relative 0 tabsize s)
(conditional-newline :fill s)))))

The function below prints a vector using #(...) notation. A dummy list argument

of nil for wi thin-logical-block is used along with the macro logical-block-count,

because the structure being printed is not a list. Here the functional interface to XP is

appropriate, because format control strings do not provide any way to traverse a vector.

(defun print-vector (v *standard-output*)
(within-logical-block (nil nil :prefix "#(" :suffix ")")

(let ((end (length v)) (i 0))
(when (plusp end)

(loop (logical-block-count)
(write (aref v i))
(if (= (incf i) end) (return nil))
(write-char #\space)
(conditional-newline :fill))))))

* fill-style stream list &optional (colon? T) atsign.9 - nil

* linear-style stream list Roptional (colon? T) atsign? =: nil

e tabular-style stream list &optional (colon? T) atsign? (tabsize 16) => nil

The directives -/fill-style/, J/linear-style/, and -/tabular-style/ (see page 16)
are supported by the three functions above. These functions can also be called directly
by the user. Each function prints parentheses around the output if and only if colon?

default T) is not nil. Each function ignores its atsign? argument and returns nil. Each
function handles abbreviation and circularity detection corre, 'ly. and uses write to print
!i~t when given a non-list argument.

Th, function linear-style prints a list either all on one line, or with each element on
; s,parate line. The function fill-style prints a list with as many elements as possible

I L,'ah line. The funciion tabular-style is the samte as fill-style except that it prints
th. el, ient s >,, that they lineo up in coluinns. This function takes an additional argunient

defailt 16) That specifies the column spacing.

0

23

4. Pretty Printing Types of Objects

As discussed in Section 2, the pretty printing performed by XP is directed by the
value of *print-dispatch*. The value of this variable is a print dispatch table. This
table is initialized with a number of entries that specify how to pretty print all the
built-in Common Lisp macros and special forms. You can tailor the pretty printer to
your own needs by adding new entries into the table and/or replacing existing entries.
Multiple styles of pretty printing can be supported by constructing several tables and
switching between them. The primitives supported for operating on print dispatch tables
are designed in analogy with the operations associated with read tables.

* copy-print-dispatch koptional (table *print-dispatch*) 4= copy

A copy is made of table, which defaults to the current print dispatch table. If table
is nil, a copy is made of the standard print dispatch table initially defined by XP.

e define-print-dispatch type-specifier options &body function z4* T

This puts an entry into a print dispatch table. The type-specifier is implicitly quoted
and is a standard Common Lisp type specifier as defined in (41. It specifies what type of
objects the entry is applicable to. The function specifies how to pretty print that type
of object. When appropriate, the function will be called with two arguments: an output
stream and the object to print. The options are a list of pairs of a keyword and a value.
Three different keywords are possible:

(:table table)

This option specifies where to put the print dispatch entry being defined. If this
option is not present, the entry is placed in the table stored in *print -dispatch*.

(:priority number)

This option spxifieb a priority that is used to control the order in which entries in
the print dispatch table are compared against an object to be printed. If this option is
not present. the priority defaults to 0.

(:name name)

If present. this option specifies a name to be given to function. This makes it possible
to reuse the function- -e.g.. in another call on define-print-dispatch.

Before creating a new entry in the table, define-print-dispatch removes any existing
,ntrv with the same (equal) type specifier no matter what its priority. This guarantees
that there will never be two entries that have the same (equal) type specifier. However.

given a particular ohject it is likely that it will miatch several entries. The entry to use
for printin i, vlect,,d lv taking the matching entry with the highest prlority.

Before diH,', sin te han dlinng of the function and tvpe-,pecifier in detail. it is iiseful
to Consider a Ireefxaimple. I he definition below specifies a new way to print ratios.
)n'e ent ered i to the print dispatch tabl,", it alters the way every ratio I. pretly printed.

24 Pretty Printing Types of Objects

The use of &rest x in the argument list below makes it possible to use f/ratio-print/

in a format string.)

(define-print-dispatch ratio ((:name ratio-print)) (stream obj &rest x)
(declare (ignore x))

(format stream #"#.(/ -,OF ",OF)" (numerator obj) (denominator obj)))

(pprint '(2/3 250 -4/5))

Prints:

(#.(/ 2. 3.) 250 #.(/ -4. 5.))

Pretty Printing Functions

The function in a define-print-dispatch call can be specified in one of five ways.
First. as shown in the example above, it can be an argument list followed by a body
consisting of one or more statements. The argument list must be consistent with the fact
that the function will be called with a stream and an object. The function can assume
that the object satisfies the associated type specifier.

Second, the function can consist solely of an instance of #'name. If so, the indicated
function will be used as the printing function. (Note that if ratio-print used 'W instead
of -,OF to print the numerator or denominator, infinite recursion would occur, because
these parts are themselves integers.)

(define-print-dispatch integer ((:priority 1)) #'ratio-print)

(pprint '(2/3 250 -4/5))

Prints:
(#.(/ 2. 3.) #.(/ 250. 1.) #.(/ -4. 5.))

Third, the function can be an instance of #".. .".

(define-print-dispatch (and ratio (satisfies plusp)) ((:priority 2))
#"(+ -/ratio-print/) ")

(pprint '(2/3 250 -4/5))

Prints:
((+ #.(/ 2. 3.)) #.(/ 250. 1.) #.(/ -4. s.))

[mrth. the function can be nil. In this case, any currently existing entry for the
type specifier is removed without replacing if by anything. Pretty printing for objects
that match the indicated type specifier will be controlled by the other entries they miatch
I if any).

(define-print-dispatch (and ratio (satisfies plusp)) () nil)

(pprint '(2/3 250 -4/5))

1)rints:

(#.(/ 2 3) #.(/ 250 1) #.(/ -4 5))

Fiftli. the function can be totaily (miitle(l. In this Case.. any currently itin1 e, r.\

wr iype peciier is removed and the ,taidtrd pretty printing function (if any) (,rr.
-i lii) tO he type specifier is reentered into tliv table at the newly specitied priority.

Pretty Printing Type Specifiers 25

Pretty Printing Type Specifiers

When an object is to be pretty printed, the print dispatch table stored in the variable
print-dispatch is consulted to find out how to print it. This is done by looking at the

entries in the table in the order of their priorities and selecting the first entry for which
(typep object type-specifierl is not nil. The type specifiers can take any of the forms
described in the Common Lisp book [41. In addition, the type specifier cons is extended
to make it more useful.

It is expected that the table may contain entries whose type specifiers partially overlap
in various ways. For example, the standard print dispatch table contains a catchall entry
for printing lists in general and a number of entries for printing specific kinds of lists.

As a result. you must be careful with your choice of priorities. If an object matches two
different entries that have the same priority, there are no guarantees as to which entry
will be used.

Pretty printing lisp code. The definition below shows the default method XP uses
for printing lists that represent data rather than programs. (The functions linear-style,
fill-style, and tabular-style are all defined with their colon? and atsign? arguments
optional so that they can be used as define-print-dispatch functions.) It can be very
useful in some situations to use tabular-style instead of fill-style to print data lists.

(define-print-dispatch cons ((:priority -10)) #'fill-style)

However, it should be noted that, in Lisp there is no completely reliable way to
distinguish between lists that represent program code and lists that merely represent
data. Nevertheless, the following type specifier is useful for specifying tests that do a
good job most of the time.

e cons &optional (car-type T) (cdr-type T)

When used simply as the symbol cons, this type specifier matches any cons cell. When

used in the form above, it matches a cons cell only if the car of the cell matches the type
specifier car-type and the cdr of the cell matches the type specifier cdr-type.

The examples below show some of the predefined pretty printing functions for Lisp
code. By default. function calls are printed in the standard way-i.e, either all on one

line or with the arguments one to a line indented after the function name. Lists beginning
with cond are printed the same way as function calls except that the clauses are always
printed in linear style, rather than in the format suggested by their cars. Lists beginning
with setq are printed with two arguments on each line. Lists beginning with quote are
printed using the standard '" syntax. Note the care taken to ensure that data lists that
happen to begin with quote will be printtd legibly.

(define-print-dispatch (cons (and symbol (satisfies fboundp)))
((:priority -5))

(define-print-dispatch (cons (member cond)) ()
" :'W" :['©'© /linear-style/'" "_-

26 Pretty Printing Types of Objects

(define-print-dispatch (cons (member setq)) ()

(define-print -di spat ch (cons (member quote)) 0) (s list)
(if (and (consp (cdr list)) (null (cddr list)))

(format s '"W" s (cadr list))
(fill-style s list)))

Pretty printing structures. An important use of XP is to print data structures.
fin fact. typical Lisp interactions call for much more printiag of data than printing of
prograrisi_. Pretty printing can do just as much to enhance the readability of this output
as it citn to enhance the readability of code. As shown beiow, pretty printing functions
,or strilctures that have been clefi-.ed without the :type option canl be specified with
retererice, to their types,

(defstruct family mom kids)

,,define-print-dispatch family (1) (s f)
(format s #"0Q<#<VW and -21'_':/fill-style/;>-:>"

(family-mom f) (family-kids f))

(write (list 'Principle-family
(make-family :mom "Lucy"

Akids '#1=("Mark" "Bob" *I# "Bill" "Dan")

W\ith *print-pretty* T. ie widlth 23, and *print-lines* 3 prints:
(principle-family

#<"Lucy" and
("Mark" "Bob"--

With *print-pretty* T, *print-level* 3. and *print-length* 3 prints:

(primary-family #<"Lucy" and ("Mark" "Bob" # ...)>M

With *print-pretty* T. *print-escape* nil, and *print-circlev; T prints:

(primary-family #<T~ucy and #1=(Mark Bob #1# Bill . Dan)>

A m j- n mg to notice about the pretty printing function above is that without the
prog-ralmmner having; to take ainy explicit action, it tolerates a malformied kids list and

correct v follows the printer control variables *print-lines*, *print-level*, *print -
length*. *print-escape* anid sprint-circle*. This should be contrasted with (ourinion

Lssclr rr'nt suippo)rt for st ruct ore print self functions. where it IS diflicult to handle

print -level arid *print -length* correctly and impossible to handle *print-circle*

,r 2 I %..

I hl.re i, clearI' at close rl oripbetween XP's pretty printing funct ion." for si ruc-

tire :,rid hc titrki cluiwiept 41 t print hiriction for a struicture. lluwek-vvr. there is

liu.Jtfi'iIiidilh-ri'rice ini aplIrtI;icl. X11 otores the function inI a prit (liiiitt(Il 1t al'
erIhiii directlY wI Iitle frlitlire. Tlirv iakes it poss ible to ,Ifi tilt ittieoti..li ipporT1

d it['rvrnt)\I d prritiiiw' kv ituairitalirug several (liffereit dlcpitchu taL>t1io
~l Ii r;lildl, v bi we'l t hin. However. it hsthe (l,i(lvanta'_oe 111;1 pretty% pri10tirl4-

fliii(ti atre onl\ ued wlu,'r *print-pretty* is not nil. TIhis, coudI haive fte 'IL'ct tof

t'ucrul2- .()I to (l('Iiti''i. prtt rit julg fitiOH,io ad a print fiinctitmr Itr t lie >aru i w n
oir', ii.rtelY to enu(re that the li-rlictiire is always printerI the s>aui'' Wa',. To a Oi ,

Pretty Printing Type Specifiers 27

problem, XP uses the print function for a structure whet no pretty printing function is
available.

Efficiency. Given only what is said above, the process of determining the printing
functionis tu be used Lur iltc va'Luus parts of an object to b printed wrmld he horrendouslv
inefficient, because every part of the object would have to be compared against every entry
in the print dispatch table. xP avoids this problem by speeding up the selection process
in two ways.

A hash table is used to very rapidly compare an object against every entry with a
type specifier in the print dispatch table that has the form (cons (member symbol)). A
second hash table is used to rapidly compare objects with type specifiers that are the
types of structures defined without the :type option. It is advisable for you to make as
many print dispatching entries as possible fit into these two categories.

Predefined pretty printing functions. To support traditional Lisp pretty printing
style, xP provides pretty printing functions for all of the Common Lisp macros and
standard forms. The user can change the way any given kind of list is printed by defining
a new list pretty printing function for it. To facilitate the correct utilization of priorities,
Figure 4.1 summarizes the contents of the standard print dispatch table initially defined
by xP.

Priority Type Specifier Pretty Printing Action
0 (cons (member symbol)) ;60 printers for Lisp code.

-5 (cons (and symbol (satisfies fboundp))) Print as function call.
-10 cons Print using fill-style.

Figure 4.1: Contents of the initial print dispatch table.

If an attempt is made to pretty print an object that does not match any entry in
the current print dispatch table, one of the following default actions is taken. Arrays are
printed appropriately following the value of *print-array*. Structures are printed using
their print functions (if any). Otherwise the object is printed using the standard printer,
with *print-pretty* bound to nil.

28 Ugly details

5. Ugly details

xP i implemented in fully portable Common Lisp. However, a number of compro-
"nC:e kad ', be made for this to he true. The discussion abe:ve dc!bcratc!y g!cse'es over
these problems on the theory that there is no fundamental need for them to exist and
they would not exist if xP were implemented as part of Common Lisp, rather than as a
,eparate package. This section discusses these problems in detail and explains how they
have been dealt with in Symbolics Common Lisp [8]. It is hoped that they can be dealt
with as easily in other implementations of Common Lisp.

Insufficient integration with non-pretty printing. xP never comes into play
unless *print-pretty* is not nil, #"... " is encountered, or a format string is evaluated
that contains one of xp's special format directives. This is done as a matter of safety
and so that xP will operate purely as an add-on system. However, it has drawbacks. For
example. the variable *print -right -margin* only has an effect when XP is in operation.
Similarly. *last -abbreviated-printing* only gets set when XP is in operation. If xp were
combined into a ('onimon Lisp implementation, it would be natural to combine it directly
into the standard output routines, and support variables like *print -right -margin* and
last -abbreviated-printing all of the time.

Getting XP to take effect. By far the biggest problem is that Common Lisp has
no standard mechanism for allowing a new pretty printer to be specified. The function
xp: :install uses shadowing to redefine the standard Common Lisp printing functions.
However. this is of somewhat limited utility for several reasons.

First, shadowing fundamental functions like print and defstruct is a dangerous prac-
tice. In particu!ar, while it can work when it is done by one subsystem, it is almost never
going to work if two subsystems try to do it.

Second. shadowing only effects programs that are read into the package where xP is
installed after xP has been installed. Among other things this means that it will not
change the printing that is initiated by the Lisp system itself. For example, it will not
change the printing done by the top level read-eval-print loop. You can change this easily
enough. but that leaves a host of other places where the system initiates output such as
various things printed by the debugger.

You tould try to install XP itmore firmly by altering the function cells of the standard
printing functions. However. this is an exceptionally dangerous thing to do and is quite
likely to, break the system. I To start with, it will break XP.)

In any ,vent, clobbering thee finction cells would not fix the problem, because many
Lfisp itipclrrintatioris do output bv calliing primitive output functions that are not part of
he itirilard -et o oMiiion I mi>p nitput functions. As a result, clobbering the standard

hi nc i,, till would n,,t fix all om tplit.
A httr tisk.,r i to have a hii k in the [.i>Jp systeiti that .-, pr pard to accept a

ntew pretty printer. Sviiiolic, (Commirin l.ip has such a hook in the form f the v;,ri-
aible s cl: *print -pretty -printer*. [lie vinldics Conimuon Lis p version of the function
xp: :install sets thi variable to a value that caus.'es xp to be used for all pretty printimg.

.An nteresting aspect of tle li unct In ino tlled on scl: *print -pretty-printer* is t h at
it trap-; any errors that occur when printing is (lone. Thi., is very useful when such errors-

29

are happening while you are trying to debug something else. However, trapping such

errors can be very annoying when it is a define-print -dispatch function or something

like that that is being debugged. You can turn off the error trapping feature by setting

the variable xp: :*allow-errors* to T.

Obtaining information from output streams. To operate as intended, xP necds
to be able to get two pieces of information from an output stream before starting to print

into it. This information is obtained by calling the following two functions.

e xp: :output-width &optional (output-stream *standard-output*) =: width

Returns the ma.dmum number of characters that can be printed on a single line
without causing truncation or wraparound when printing to output-stream, or nil if this

cannot be computed.

* xp: :output-position &optional (output-stream *standard-output*) = position

Returns the number of characters printed so far on the current output line in output-
stream, or nil if this cannot be computed.

Unfortunately, although every implementation of Common Lisp probably supports

internal functions providing this information, there are currently no standard Common
Lisp functions yielding this information. xP contains appropriate definitions of the func-

tions above for several different implementations of Common Lisp; however, in other

implementations it is reduced to using default (useless) definitions of these two functions

that always return nil. If you are operating in one of these other implementations (you

can tell by looking at the beginning of the xP file) you should provide better implemen-
tations for these functions.

Imperfect integration with structures. To operate as intended, xP needs to be
able to determine which types are structure types. This is done by calling the following
f', ction.

* xp: : structure-type-p type = boolean

Returns non-nil if and only if type is a structure type defined by defstruct without

the :type option, and nil otherwise.

Unfortunately, although every implementation of Common Lisp probably supports an

internal function providing this information, there is currently no standard Common Lisp

function yielding this information. XP contains appropriate definitions of the functions

above for several different implementations of Common Lisp; however, in other iiple-

inentations it is reduced to pessimistically assuming that the only structures are ones

defined using xp: :defstruct (which is used to shadow lisp:defstruct if xp: :install is
called with :shadow T). If wou are operating in one of these other implementations (you

can tell bv looking at t,'' be('inT iTrg of the xP file) von should provide an iniplementation

for xp: : structure-type-p.
:\notther potential problem is that xP assumies that if a structure is defined using xP's

shadowed version of defstruct, then the structure's print function (if any) is defined
,tsing the xp's shadowed versions of the variois printing functions. .\s a result, xi)' does

30 Ugly details

not hesitate to call such a print function with one of its special pretty printing str,-ms
as an argument. Since it is possible for the assumption to be false, this can lead to
problems.

Limitations on the definition of new type specifiers. Due to the extreme
restrictions Common Lisp places on the ways complex type specifiers can be constructed,
there is no implementation independent way to support the extended definition of the
type specifier cons as a first class type specifier, even though it does not violate the
"spirit' of what can and cannot be a type specifier. As a consequence of this limitation,
the extend form of cons can only be used in conjunction with define-print-dispatch.
This could easily be remedied if xP were incorporated directly into Common Lisp.

Imperfect integration with format. xP supports 99% of the functionality of
format, but not all of it. In particular, XP takes pains to fully support format as described
in 4. However, there is one place where xP falls short of this goal.

As discussed above, the standard format directive "<... > is more or less incompatible
with ><... " and the other pretty printing directives. However, it is permissible to have a
garden variety instance of "... "> nested in a format string that also contains some pretty
printing directives. In this situation, XP uses the standard function format to process
the part of the format string containing the -<...->. Unfortunately, this only works
when it can be determined exactly how many arguments will be used by the "<... '>.
As a result, xP is forced to require that <... . '> cannot contain complex directives like

e{... }. ", and -* or anything similar. This problem could be straightforwardly fixed
if XP duplicated all of the code in the standard function format that supports <...

instead of merely using the standard function format.
Another area of difficulty concerns the fact that XP is oriented around supporting

forruating functions (e.g., created by #"...") rather than format control strings. Nev-
ertheless, in the interest of upward compatibility, xP allows format strings to be used.
However, there are three complications with this.

First, to avoid having to implement an interpreter for format strings as will as a
compiler for #"...", XP converts each format string that contains any of XP's special
directives into a function the first time it is encountered. This works well as long as
format strings are not modified by side-effect. The caching of converted format control
strin~ can be turned off by setting the variable xp: :*format-string-cache* to nil.

Second, some implementations of Common Lisp support format directives beyond the
ones define(in 4 or support additional features of the standard format directives. No
itierrinp is made to support this functionality in conjunction with the special directives
,upp,,rted by XP. However, it order to make .-ure that merely installing xp will not
break anv currentlv running code. XP con verts format strings to functions ornlv If they
nain,)ne or more of XP'- special directives. If a format string does not contain any of

XP's pecial directives, it is left as a string and the standard function format is used to
[rM),C,, it.

l it, the dwuhal approach of using X' for ,oiie format string.., and standard format
ftor thers ha., ,onie Implications with regard to the directive "? and the usage { with
ii), ol . If t he.,e forms exit in a format ; string that does not contain any ,,f XP's ,lcial

dir,,ctives, then the control arguments they receive mu lst be format .,trigias rather tham

31

functions. On the other hand, if they exist in a format string that contains any of XP's
special directives then the control arguments they receive must either by functions or
format strings that can be successfully converted to functions by xP.

Beyond the problems above, there are several points where the documentation in 4
is not entirely clear, and about which different implementations of Common Lisp seem
to disagree. xP may not be doing the right thing in these situations. In particular:

How exactly does -* act in a {... } and -I...-}? Is it telative to the arguments
being processed by the whole loop, or relative to the arguments being process by the
current step of the loop? xP assumes the former.

There is no detailed grammar given for how a directive can be specified. In particular,
can a colon or atsign modifier be specified before all the parameters have been specified'?

XP assumes not.
What is supposed to happen to the argument list when a cycle of "{... } is pre-

maturely terminated by a -- directive? In particular, are the arguments that have been
processed supposed to have been removed or not? In the interest of simplicity, xP assumes
they should be removed.

Is -- supposed to operate identically when accessed via {} with no body and a 'a?
directive? xp assumes that it is. (It would be quite difficult for XP to support things any
other way.)

Assumptions about the read table. It was possible to more than double the
speed of xP by assuming that the characters "a-z", "A-Z", "*", "+", "<", ">", and -"
always have the same syntax as defined in the initial read table. This assumption would
not be necessary if Common Lisp provided any quick way to determine what the syntax
of a character is.

The delay caused by buffering. As part of its operation, xP buffers up output
characters before actually printing them into the appropriate stream. The fundamental
source of the efficiency of the pretty printing algorithm is that things are designed so
that the buffer never has to contain more than one line width worth of output. The
algorithm sends output to the underlying stream one line width at a time. The buffer
is not guaranteed to be completely empty until the printing is completed. Thus there is
typically a delay between the time characters are put in the buffer (e.g., by a call on some
printing function in the pretty printing function for some type of object) and the time
they appear in the output stream. This can be confusing if a process which is performing
pretty printing is interrupted (e.g., during the debugging of a pretty printing function).

The functions finish-output and force-output can be used to force the internal
buffer to empty out. However, to maintain internal consistency in the pretty printing
algorithm, all of the logical blocks that have been started but not yet completed are
printed as if they will not be able to fit on a single line. As a result, the output niay not
look the same as it would if the buffer were not prematurely forced to empty out.

Taking full advantage of information about formatting special forms. 'vmn-
bolics Common Lisp contains a lar-e niiumber of special forums that have to be prelt%

printed in special ways in addition to the standard Common Lisp special fornms. In

Symbolics ('ommon Lisp, XP takes advantage of the fact that the zkvWI editor 1mmai m-

rains information about these forms in order to dletermine how to pretty print themi..

:32 Ugly details

similar sharing of information between XP and the Lisp editor might be useful in other
environments as well.

Reprinting an abbreviated object. XP supports a special function that facilitates
the reprinting of the last abbreviated object. In Symbolics Common Lisp, xp: :install
sets up the the key sequence <function> <resume> so that it triggers the reprinting in
full of the last abbreviated printing. This turns out to be very convenient. A similar
mechanism might be useful in other environments as well.

No support for font variations. The pretty printing algorithm depends on exten-
sive ciculations about how much space strings of characters will take up when displayed.
These calculations are greatly simplified by assuming that every character will have the
same fixed width when displayed. Only newlines are treated specially.

It should be noted that (except for -T) the standard format directives all make the
same simplifying assumption. However, this assumption can lead to problems in some
sit uations. For example. it is inadvisable to use literal tab characters when pretty printing
and the output produced by XP looks quite strange when it is displayed using a variable
width font.

Trhe above not withstanding, the fundamental algorithms used by XP could be ex-
tended to handle characters of variable width and characters whose width depends on
the position where they are displayed. In addition, the interface has been designed as
much as possible to be independent of this issue.

The only user-visible things that refer to actual lengths are the variables *print-
right-margin*. *default -right-margin*, *print-miser-idth*, and the numeric argu-
nients to 'T. -I, and -/tabular- style/ and their functional counterparts. All of these
measurements must be in the same units, but it does not matter a great deal what the
units are. A good choice would be something like the length of an "," in the current font.
This will work out right for fixed width fonts and pretty well for variable width ones. Pro-
grammers should be advised to avoid explicit lengths-i.e., they should rely on streams
knowing how wide they are and use -0:I whenever possible to indicate indentations.

Doing Things Right

xP i., the kind of program that cannot really be supported in a totally portable way in
'oriion Lisp. This is true both due to the various problems outlined above and because

there are a niuiber of things where portability has only been achieved at the significant
.arili e of efficiency. The right thing to do when incorporating XP into a Common Lisp
i, not to)r Ierely load the system and use it, but rather to totally integrate it with the
w\ay printin, is done.

Places where XP needs to be more tightly integrated with the primitive
printing facilities. There are a number of places where xP falls back on using the
.tandlard printing facilities. The standaM(function write is used to print objects for
which flit re is no ,pecial print igr f'unction in *print-dispatch*. [he standard inction
format is used to support complex format directives like -R. -C. and -F. In both cases
thi i lu(u4 hv having the ,t;1ndard functiot, output into a ,t ring ;n(d then copying the
>trnrigr into X1 ps internal bulfer.

Doing Things Right 33

This is effective, but quite slow. As a result, printing with xP is noticeably slower
than printing with *print-pretty* nil. This is unfortunate, because as demonstrated by
PP 71, the algorithms underlying xP are sufficiently efficient that it is possible for pretty

printing to be virtually as fast as non-pretty printing. The only thing that is missing is
proper integration with the printing subprimitives.

To a certain extent, superior integration could have been achieved by duplicating
more of the basic printing code as part of xP. However, it would not be possible to
achieve perfect integration in a portable way, because Common Lisp does not provide
any way to get information out of the read table. As a result, write must be used to print
symbols. (As discussed above. xP gets around this problem to some extent by making a

few conservative assumptions about the read table.)
The right thing to do when incorporating xP into a Common Lisp is to modify XP

so that it directly calls the appropriate printing sub-primitives and modify the sub-
primitives so that they put their output directly into xP's internal buffer.

Places where the primitive printing facilities need to be more tightly in-
tegrated with XP. To get XP to really take over for all pretty printing, it needs to be
installed in such a way that it is always used. The right way to do this is to insert a call
to it deep in the standard printing code at the point where the variable *print-pretty*
is tested.

In addition, all of the functions that make use of format strings (e.g., error) should be
extended so that they can make use of #"..." and the special pretty printing functions.

Beyond this, there is a more subtle problem. Internally, xP operates in two stages.
The first stage supports dispatching through *print-dispatch* along with various kinds
of abbreviation. This dispatching is accessed via the directive -W and the function vrite.

The second stage performs the actual dynamic formatting decisions.
The second stage essentially operates as a special kind of output stream. This stream

receives output characters and commands related to logical blocks and conditional new-
lines. After deciding where to insert line breaks, the output is sent on to the ordinary
stream that is the eventual destination of the output. This organization is largely hidden.
However, it becomes apparent in one key situation.

When writing special printing functions (i.e., to be used with define-print-dispatch,
defstruct, or -/.. .) it is permissible to use any kind of printing function. However,
these functions are called with special XP streams as arguments rather than ordinary
streams. (This is essential, because XP must be able to catch all output before it gets
to the real output stream.) As a result, all of the standard printing functions (e.g..
print. terpri, force-output) have to be modified so that they will operate correctly
when passed a special XP stream.

Alternatively, the fundamental concept of what an output stream is can be altered
so that every stream is capable of supporting the operations of the second stage of
XP. This approach was taken by PP. and worked very well. A particular advantage
of this is that it allows proper integration of xP with functions like with-open-file and

it;h-outcput;-t;o-st~ring. Unfort unately. it is impossible to create a new kind of st ream in

a portable manner, because Common Lisp does not provi(le any appropriate primiltives.

Using XP to the full. Because the capabilities of xP go way beyond typical pretty

34 Ugly details

printers, XP can be used in many ways that typical pretty printers cannot. As a result.
It is useful to extend a Common Lisp so that it takes better advantage of pretty printing.
To start with, since (when properly integrated) XP is just as fast as a non-pretty printer
their is no reason not to have the default value of *print-pretty* be T.

Beyond this, many kinds of output done by the system itself should be upgraded to
take advantage of XP. As an example, in Symbolics Common Lisp, the trace facilities can
be used to print out information about the arguments a function is called with whenever
it is called. This output is produced using standard format control strings and always
prints all the arguments on one line. If the arguments are large, this output ends up
being more or less unreadable. The Symbolics version of xp: :install replaces the trace
printer with a new function that takes full advantage of xp. There are dozens of other
places where such changes could profitably be made.

* Bibliography

I ColsteinI., "~Pretty Printing, Converting List to Linear Structure". MIT %E%1-279.
February 1973.

2 Hearn A.C. and Norman A.C., A One-Pass Pretty Printer, Report VVC(S-7 'i-1 12.
Univ of Utah, Salt Lake City Utah, 1979.

:1, Oppen D., '-Prettyprintinr". ACAI TOPLAS, 2(4):16.5-483, October 1980).
4 "Steele G.L..Jr.. Common Lisp: the Language, Digital Press, Maynard NMA, 11184.

5'Waters R.C., Gprinit: A Lisp PrettY Printer Providing Extensive User
Formnat-Control Vechani2szzis MIT 'AIMI-611. October 1981.
(Revised version 'MIT,'AINI-6 1 a. September 1982.)

6' Waters R.C., "User Format Control in a Lisp Prettyprinter", ACM TOPL.h.
5(4):513-3l, October 1983.

7' Waters R.C., PP: A Lisp Pretty Printing, System, MLT/AIM-816. December lH' I.
8 Lisp Machine Documentation for Genera 7.0, Symnbolics, Cambridge %IA. IMti.

:36 Historical Note

Historical Note

The original #print system was written in MacLisp in 1977. The primary motivation
behind #print was producing a pretty printer significantly faster than the Goldstein
pretty printer 1 then in use. By means of the same basic algorithms that are still in use
in XP. #print succeeded in being almost as fast as ordinary printing. In addition to using
fundamentally the same algorithms as XP, #print followed the same basic approach of
having pretty printiag control strings for specifying how to control the dynamic layout of
output and mechanisms for associating pretty printing functions with types of objects.
However, the interface was markedly different in two respects.

First. the pretty printing control strings used by #print were developed before format
camie into wide use. Although fundamentally similar to format control strings, they
looked very different, because they treated unmarked characters as directives instead of
literal characters to be printed out. Literal output had to be specified by enclosing it
in apostrophes. The pretty printing control strings were also described in a confusing
way that exposed unnecessarily much of the underlying algorithm. Second, the niecha-

nisHIs uised by #print to associate pretty printing functions with types of objects were
significantly more cumbersome and less powerful than those supported by xp.

#print was released for general use in the MIT Al Laboratory in January of 1978.
[Iowever. probably because satisfactory documentation was never produced, #print was
riot extensivelv used by anyone other than the author.

In early lrso. #print was cleaned up and re-released under the name Gprint. The
prinnarv change was that. Gprint extended the power of (and further complicated) the
iiechanisnus ',r as,,ociating pret y printing functions with types of objects. In late 1981,

full (loctinientatlion was prepared !5I and Gprint began to reach a wide audience.
In the spring and sunimer of 1982, Gprint was converted to run on the Symbolics

Lisp Machine. After a delay of a year or so, Gprint was adopted as the standard pretty
printer on the Synmbolics Lisp Machine, in which role it is still being used today. However,
Synbolics decided not to publicize the interface that can be used to define new ways of
pretty printing things. In the summer of 198:3, DEC converted Gprint into their Common
1,ip and adopted it and its interface as official parts of their Common Lisp.

It) PiS 1. Gprint was totally rewritten in Symbolics Lisp Machine Lisp and re-emerged
;ti pp 7 . Ihe keY advance was that PP unified the concepts of format control strings and
prt printing control strings, recasting everything in format's syntax. From the point
,,f w ,f people who understand format, this simplified things tremendously. Pp also

lit i itiplified the nechanisms for associatirg pretty printing functiois with types
,I, j., ' by ,li m1lt iinf the least used features. In the fall of 1985, DEC upgraded their

o. , in'lu"ide P adll its interface instead of Gprint.

I:1 I'00M .I'll ', - t.,tally r'written itl completely p,,rtable ('omnion Lisp and re-emered

XI'. XI"- manor ,ontrihitin is that. by taking an entirely dif rent approach, it
remu I, -irplii,-, the iehai ii,miti for as>ociattini pretty printing functions with types of
Ibj)'" t. rid [ak,'> c , ,t he ,' vt, ,,,ri.r , powrful theri the iechanisrns .upported by Gprint.

Sin ,, ",,.pteniher I . X' >, ,been in e.perimiental use as the pretty printer in (MI
, I.i>p. (irren 'I.. \1' ttti it> : ,rface are hin t COT idere(l 1% the ('oiniiion Lisp

-!tardirhzation conmnittee f,,r ;dop ri n as a f)rmal part of ('onnn(n Li>1 .

37

Functional Summary and Index

The entries below describe the various functions, variables, and macros supported by
xP. showing their inputs and outputs, the pages where documentation can be found, and
one line descriptions. The next page sunmmarizes the extensions to format.

conditional-newline kind &optional (stream *standard-output*) =: nil

p. 20 Functional interface to "_.
copy-print-dispatch &optional (table *print -dispatch*) =: copy

p. 23 Copies a print dispatch table.
default -right-margin default value 70.

p. 4 Default line width to use when pretty printing.
define-print -dispatch type-specifier options &body function =* T

p. 23 Defines a new print dispatch table entry.
cons &optional (car-type T) (cdr-type T)

p. 25 Type specifier that matches a cons if its car and cdr are of the indicated types.
fill-style stream list &optional (colon? T) atsign? =:> nil

p. 22 Function underlying '/fill-style/.
xp: :install &key (:package *package*) (:macro T) (:shadow T) (:remove nil) > T

p. 1 Makes XP ready for use.
last -abbreviated-print ing

p. 19 Variable recording last printing event that was abbreviated.
linear-style stream list &optional (colon? T) atsign? =:= nil

p. 22 Function underlying -/lineax-style/.
logical-block-count &optional (stream *standard-output*) =* nil

p. 21 Supports length abbreviation.
logical-block-indent relative-to n &optional (stream *standard-output*) : nil

p. 20 Functional interface to 'I.
logical-block-pop args &optional (stream *standard-output*) => item

p. 21 Supports length and circularity abbreviation.
logical-block-tab kind colnuni colinc &optional (stream *standard-output*) z4> nil

p. 20 Functional interface to 'T.
print-lines default value nil

p. :3 Variable limiting the total number of lines pretty printed.
print -miser-width default value 40.

p. 3 Variable specifying when pretty printing should switch to space saving mode.
print -right -margin default value nil

p. 4 Variable specifying the line width to use when pretty printing.
print -dispatch default value causes standard pretty printing

p. 3 Variable containing the current print dispatch table controlling pretty printing.
tabular-style stream list &optional (colon? T) atsign? (tabsize 16) = rill

p. 22 Function underlying -/tabular-style/.
within-logical-block (stream-symbol list &key :prefix :per-line-prefix :suffix)

&body body t nil
p. 19 Functioal interface to -<. -:>.

38 Functional Summary and Index

*"... " (p. 5) Functional format control string.

The directive -W (write object p. 4) uses the function w-ito to output the correspond-
ing format argument without forcing the setting of any output control variables.

-W (p. 4) Prints an argument following all output control variables.
- :W (p. 4) Forces pretty printing.

-QW (p. 4) Suppresses length and depth abbreviation.

There are three special directives for printing lists. Each of them prints parentheses
around the output when used with the colon modifier.

"/fill-style/ (p. 16) Prints as many elements as possible on each line.
"/linear-style/ (p. 16) Prints elements all on one line or one to a line.
"c/tabular-style/ (p. 17) Prints elements in a table with column spacing c.

The directive -<prefix-; body ; suffix-:> (logical block, p. 7) iterates over a list argu-
ment using body to print the elements of the list in a logical block. The prefix and suffix
are printed before and after the block respectively.

<... ":> (p. 7) Denotes a logical block and descends into a list argument.
"4<... :> (p. 7) Operates on all the remaining arguments.
:< body- :> (p. 9) Prefix and suffix default to "(" and ")" respectively.

"<body" :0> (p. 9) Body printed to fill the line width.
"<prefix-a;... :> (p. 9) Prefix printed on each line.

The indentation in a logical block is initially set to the column position of the first
character in the block. The directive -I (set indentation, p. 13) is used to alter the
indentation within a logical block. If omitted, the parameter defaults to zero. When a
logical block is printed in miser style, all instances of -I are ignored.

II (p. 13) Indentation set to position of first character in block plus n.
n:I (p. 13) Indentation set to position of directive plus n.

The directive "_ (conditional newline, p. 10) specifies a place where a newline can be
inserted in a logical block. For a discussion of line breaks inserted by other means than

. see page 12.

S1p. 10) Linear-style conditional newline.
" (p. If) Fill-style conditional newline.

-0- (p. 10) Miser-style conditional newline.
":(D- lp. 12) Mandatory-style conditional newline.

The directive 'T has augnented capabilities.

:T (p. 11) Tab relative to containing section.

